Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/CodeProgrammer/3769
Create:
Last Update:

๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐—ฃ๐—–๐—”)
๐—ง๐—ต๐—ฒ ๐—”๐—ฟ๐˜ ๐—ผ๐—ณ ๐—ฅ๐—ฒ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐——๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐˜€ ๐—ช๐—ถ๐˜๐—ต๐—ผ๐˜‚๐˜ ๐—Ÿ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€

๐—ช๐—ต๐—ฎ๐˜ ๐—˜๐˜…๐—ฎ๐—ฐ๐˜๐—น๐˜† ๐—œ๐˜€ ๐—ฃ๐—–๐—”?
โคท ๐—ฃ๐—–๐—” is a ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐˜๐—ฒ๐—ฐ๐—ต๐—ป๐—ถ๐—พ๐˜‚๐—ฒ used to transform a ๐—ต๐—ถ๐—ด๐—ต-๐—ฑ๐—ถ๐—บ๐—ฒ๐—ป๐˜€๐—ถ๐—ผ๐—ป๐—ฎ๐—น dataset into fewer dimensions, while retaining as much ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† (๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป) as possible.
โคท Think of it as โ€œ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ดโ€ data, similar to how we reduce the size of an image without losing too much detail.

๐—ช๐—ต๐˜† ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—” ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€?
โคท ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† your data for ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ ๐—ฎ๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ and ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐—ถ๐—ป๐—ด
โคท ๐—˜๐—ป๐—ต๐—ฎ๐—ป๐—ฐ๐—ฒ machine learning models by reducing ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐˜€๐˜
โคท ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ multi-dimensional data in 2๐—— or 3๐—— for insights
โคท ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ ๐—ผ๐˜‚๐˜ ๐—ป๐—ผ๐—ถ๐˜€๐—ฒ and uncover hidden patterns in your data

๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
โคท The ๐—ณ๐—ถ๐—ฟ๐˜€๐˜ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜ is the direction in which the data varies the most.
โคท Each subsequent component represents the ๐—ป๐—ฒ๐˜…๐˜ ๐—ต๐—ถ๐—ด๐—ต๐—ฒ๐˜€๐˜ ๐—ฟ๐—ฎ๐˜๐—ฒ of variance, but is ๐—ผ๐—ฟ๐˜๐—ต๐—ผ๐—ด๐—ผ๐—ป๐—ฎ๐—น (๐˜‚๐—ป๐—ฐ๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ฒ๐—ฑ) to the previous one.
โคท The challenge is selecting how many components to keep based on the ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ they explain.

๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ

1: ๐—–๐˜‚๐˜€๐˜๐—ผ๐—บ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Imagine youโ€™re working on a project to ๐˜€๐—ฒ๐—ด๐—บ๐—ฒ๐—ป๐˜ customers for a marketing campaign, with data on spending habits, age, income, and location.
โคท Using ๐—ฃ๐—–๐—”, you can reduce these four variables into just ๐˜๐˜„๐—ผ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—ฎ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€ that retain 90% of the variance.
โคท These two new components can then be used for ๐—ธ-๐—บ๐—ฒ๐—ฎ๐—ป๐˜€ clustering to identify distinct customer groups without dealing with the complexity of all the original variables.

๐—ง๐—ต๐—ฒ ๐—ฃ๐—–๐—” ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ โ€” ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—•๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿญ: ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Ensure your data is on the same scale (e.g., mean = 0, variance = 1).
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฎ: ๐—–๐—ผ๐˜ƒ๐—ฎ๐—ฟ๐—ถ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Calculate how features are correlated.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฏ: ๐—˜๐—ถ๐—ด๐—ฒ๐—ป ๐——๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป
Compute the eigenvectors and eigenvalues to determine the principal components.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฐ: ๐—ฆ๐—ฒ๐—น๐—ฒ๐—ฐ๐˜ ๐—–๐—ผ๐—บ๐—ฝ๐—ผ๐—ป๐—ฒ๐—ป๐˜๐˜€
Choose the top-k components based on the explained variance ratio.
โคท ๐—ฆ๐˜๐—ฒ๐—ฝ ๐Ÿฑ: ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ฟ๐—ฎ๐—ป๐˜€๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Transform your data onto the new ๐—ฃ๐—–๐—” space with fewer dimensions.

๐—ช๐—ต๐—ฒ๐—ป ๐—ก๐—ผ๐˜ ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—–๐—”
โคท ๐—ฃ๐—–๐—” is not suitable when the dataset contains ๐—ป๐—ผ๐—ป-๐—น๐—ถ๐—ป๐—ฒ๐—ฎ๐—ฟ ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ or ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐˜€๐—ธ๐—ฒ๐˜„๐—ฒ๐—ฑ ๐—ฑ๐—ฎ๐˜๐—ฎ.
โคท For non-linear data, consider ๐—ง-๐—ฆ๐—ก๐—˜ or ๐—ฎ๐˜‚๐˜๐—ผ๐—ฒ๐—ป๐—ฐ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐˜€ instead.

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Python | Machine Learning | Coding | R


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/CodeProgrammer/3769

View MORE
Open in Telegram


Python | Machine Learning | Coding | R Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You canโ€™t. What you can do, though, is use WhatsAppโ€™s and Telegramโ€™s web platforms to transfer stickers. Itโ€™s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file wonโ€™t be a picture, thoughโ€”itโ€™s a webpage and will have a .webp extension. Donโ€™t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as youโ€™d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and youโ€™ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kittenโ€™s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Python | Machine Learning | Coding | R from tw


Telegram Python | Machine Learning | Coding | R
FROM USA